Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.

نویسندگان

  • Dongsheng Guan
  • Ying Wang
چکیده

High-aspect-ratio TiO(2) nanotube arrays formed by anodic oxidation have drawn extensive attention due to their easy fabrication and various excellent optical, electrical and biomedical properties. In contrast to conventional single-layer TiO(2) nanotubes prepared via constant-voltage anodization, we synthesize multilayer TiO(2) nanotube arrays with high surface area by using alternating-voltage anodization steps. This work presents synthesis and growth mechanisms of single-layer smooth TiO(2) nanotubes, bamboo-type nanotubes and double-layer nanotubes, by tuning various parameters such as voltage, time, and water content in the electrolyte. It is found that ion diffusion inside the nanotubes dominates growth of these three structures. A stable pH and ion-diffusion profile allows the steady growth of smooth TiO(2) tubes in NH(4)F-containing ethylene glycol (EG). The addition of a low-voltage anodization step reduces the pH and ion-diffusion gradient in the nanotubes and induces formation of bamboo-type nanotubes and double-layer nanotubes when a second high-voltage anodization is conducted. Ion diffusion through a nanotube takes time; thus formation of lower-layer TO(2) nanotubes costs more time if longer nanotubes are grown in the upper layer, since ions diffuse through these longer nanotubes. This ion-diffusion controlled growth mechanism is further confirmed by tailoring the water content (0-20 vol%) in the electrolyte and the voltage gaps to control the time needed for initiation of lower-layer TiO(2) nanotube arrays. The fundamental understanding of the growth characteristics of double-layer TiO(2) nanotubes presented in this paper offers us more flexibility in engineering morphology, tuning dimensions and phase compositions of multilayer TiO(2) nanotubes. In addition, we synthesize double-layer TiO(2) nanotube arrays composed of one layer of anatase phase and another layer of amorphous phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells

TiO2 is known as one of the excellent and demanded materials for its wide applications. In this paper, the growth of TiO2 nanotube arrays by using simple and inexpensive electrochemical anodizing of a titanium foil is presented. The vertically oriented TiO2 nanotube arrays were prepared in electrolyte solution of 3 wt % HF (40%) and dimethyl sulfoxide (DMSO) at constant DC voltage of 30 V for 1...

متن کامل

The effect of dye-sensitized solar cell based on the composite layer by anodic TiO2 nanotubes

TiO2 nanotube arrays are very attractive for dye-sensitized solar cells (DSSCs) owing to their superior charge percolation and slower charge recombination. Highly ordered, vertically aligned TiO2 nanotube arrays have been fabricated by a three-step anodization process. Although the use of a one-dimensional structure provides an enhanced photoelectrical performance, the smaller surface area redu...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Morphology and Microstructure of As-Synthesized Anodic TiO2 Nanotube Arrays

The as-grown structure of electrochemically synthesized titania nanotube arrays is investigated by scanning electron microscope (SEM) in combination with transmission electron microscope (TEM) as well as X-ray diffraction (XRD). The analysis reveals a preferred growth direction of the nanotubes relative to the substrate surface and the well control on the nanotube arrays morphology. The crystal...

متن کامل

Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells.

In the present work, we report a simple method of making glass-based dye-sensitized solar cells (DSSCs) with individual free-standing TiO2 nanotube arrays.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2012